Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(5): e0286127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37224168

RESUMO

In paddy rice cultivation, the amount of water used during the beginning of the irrigation season is the highest. However, there is a possibility of a water shortage at this season as climate change decreases snowfall. In this study, we propose new schemes based on the public goods game to reduce peak water volume during this season by dispersing the irrigation start dates. In our agent-based model, agents determine the irrigation start date based on the evolutionary game theory. This model considers the economic variables of individual farmers (e.g., gross cultivation profit and cultivation cost), the cost and subsidy for cooperation for the dispersion of the irrigation start dates, and the information-sharing network between farmers. Individual farmers update the cooperation/defection strategy at each time step based on their payoffs. Using this agent-based model simulation, we investigate a scheme that maximizes the dispersion of irrigation start dates among multiple scheme candidates. The results of the simulation show that, under the schemes in which one farmer belongs to a group and the groups do not overlap, the number of cooperating farmers did not increase, and the dispersion of irrigation start dates barely increased. By adopting a scheme in which one farmer belongs to multiple groups and the groups overlap, the number of cooperating farmers increased, while the dispersion of irrigation start dates maximized. Furthermore, the proposed schemes require the government to obtain information about the number of cooperators in each group to determine the subsidy amount. Therefore, we also proposed the method which allows estimating the number of cooperators in each group through the dispersion of irrigation start dates. This significantly reduces the cost of running the schemes and provides subsidization and policy evaluations unaffected by false declarations of farmers.


Assuntos
Evolução Biológica , Mudança Climática , Simulação por Computador , Água
2.
Front Plant Sci ; 8: 1187, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744291

RESUMO

Silicon is the second most abundant element in soils and is beneficial for plant growth. Although, the localizations and polarities of rice Si transporters have been elucidated, the mechanisms that control the expression of Si transporter genes and the functional reasons for controlling expression are not well-understood. We developed a new model that simulates the dynamics of Si in the whole plant in rice by considering Si transport in the roots, distribution at the nodes, and signaling substances controlling transporter gene expression. To investigate the functional reason for the diurnal variation of the expression level, we compared investment efficiencies (the amount of Si accumulated in the upper leaf divided by the total expression level of Si transporter genes) at different model settings. The model reproduced the gradual decrease and diurnal variation of the expression level of the transporter genes observed by previous experimental studies. The results of simulation experiments showed that a considerable reduction in the expression of Si transporter genes during the night increases investment efficiency. Our study suggests that rice has a system that maximizes the investment efficiency of Si uptake.

3.
Sci Rep ; 5: 15376, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26483077

RESUMO

Most terrestrial plant communities exhibit relatively high species diversity and many competitive species are ubiquitous. Many theoretical studies have been carried out to investigate the coexistence of a few competitive species and in most cases they suggest competitive exclusion. Theoretical studies have revealed that coexistence of even three or four species can be extremely difficult. It has been suggested that the coexistence of many species has been achieved by the fine differences in suitable microhabitats for each species, attributing to niche-separation. So far there is no explicit demonstration of such a coexistence in mathematical and simulation studies. Here we built a simple lattice Lotka-Volterra model of competition by incorporating the minute differences of suitable microhabitats for many species. By applying the site variations in species-specific settlement rates of a seedling, we achieved the coexistence of more than 10 species. This result indicates that competition between many species is avoided by the spatial variations in species-specific microhabitats. Our results demonstrate that coexistence of many species becomes possible by the minute differences in microhabitats. This mechanism should be applicable to many vegetation types, such as temperate forests and grasslands.


Assuntos
Biodiversidade , Ecossistema , Plantas , Modelos Teóricos , Dinâmica Populacional
4.
PLoS One ; 10(3): e0119001, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25793387

RESUMO

Carbon dioxide (CO2) efflux from the soil surface, which is a major source of CO2 from terrestrial ecosystems, represents the total CO2 production at all soil depths. Although many studies have estimated the vertical profile of the CO2 production rate, one of the difficulties in estimating the vertical profile is measuring diffusion coefficients of CO2 at all soil depths in a nondestructive manner. In this study, we estimated the temporal variation in the vertical profile of the CO2 production rate using a data assimilation method, the particle filtering method, in which the diffusion coefficients of CO2 were simultaneously estimated. The CO2 concentrations at several soil depths and CO2 efflux from the soil surface (only during the snow-free period) were measured at two points in a broadleaf forest in Japan, and the data were assimilated into a simple model including a diffusion equation. We found that there were large variations in the pattern of the vertical profile of the CO2 production rate between experiment sites: the peak CO2 production rate was at soil depths around 10 cm during the snow-free period at one site, but the peak was at the soil surface at the other site. Using this method to estimate the CO2 production rate during snow-cover periods allowed us to estimate CO2 efflux during that period as well. We estimated that the CO2 efflux during the snow-cover period (about half the year) accounted for around 13% of the annual CO2 efflux at this site. Although the method proposed in this study does not ensure the validity of the estimated diffusion coefficients and CO2 production rates, the method enables us to more closely approach the "actual" values by decreasing the variance of the posterior distribution of the values.


Assuntos
Dióxido de Carbono , Ecossistema , Florestas , Solo/química , Japão , Modelos Teóricos
5.
Plant Cell Physiol ; 56(4): 631-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25673476

RESUMO

Silicon (Si) uptake by the roots is mediated by two different transporters, Lsi1 (passive) and Lsi2 (active), in rice (Oryza sativa). Both transporters are polarly localized in the plasma membranes of exodermal (outer) and endodermal (inner) cells with Casparian strips. However, it is unknown how rice is able to take up large amounts of Si compared with other plants, and why rice Si transporters have a characteristic cellular localization pattern. To answer these questions, we simulated Si uptake by rice roots by developing a mathematical model based on a simple diffusion equation that also accounts for active transport by Lsi2. In this model, we calibrated the model parameters using in vivo experimental data on the Si concentrations in the xylem sap and a Monte Carlo method. In our simulation experiments, we compared the Si uptake between roots with various transporter and Casparian strip locations and estimated the Si transport efficiency of roots with different localization patterns and quantities of the Lsi transporters. We found that the Si uptake by roots that lacked Casparian strips was lower than that of normal roots. This suggests that the double-layer structure of the Casparian strips is an important factor in the high Si uptake by rice. We also found that among various possible localization patterns, the most efficient one was that of the wild-type rice; this may explain the high Si uptake capacity of rice.


Assuntos
Parede Celular/metabolismo , Simulação por Computador , Modelos Biológicos , Oryza/metabolismo , Raízes de Plantas/citologia , Silício/metabolismo , Transporte Biológico , Calibragem , Proteínas de Membrana Transportadoras/metabolismo , Oryza/citologia , Proteínas de Plantas/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
6.
Sci Rep ; 4: 4978, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24827887

RESUMO

Understanding the effects of climate change is vital for food security. Among the most important environmental impacts of climate change is the direct effect of increased atmospheric carbon dioxide concentration ([CO2]) on crop yields, known as the CO2 fertilization effect. Although several statistical studies have estimated past impacts of temperature and precipitation on crop yield at regional scales, the impact of past CO2 fertilization is not well known. We evaluated how soybean yields have been enhanced by historical atmospheric [CO2] increases in three major soybean-producing countries. The estimated average yields during 2002-2006 in the USA, Brazil, and China were 4.34%, 7.57%, and 5.10% larger, respectively, than the average yields estimated using the atmospheric [CO2] of 1980. Our results demonstrate the importance of considering atmospheric [CO2] increases in evaluations of the past effects of climate change on crop yields.


Assuntos
Dióxido de Carbono/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo , Clima , Mudança Climática , Temperatura
7.
Nat Commun ; 5: 3712, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24827075

RESUMO

The monitoring and prediction of climate-induced variations in crop yields, production and export prices in major food-producing regions have become important to enable national governments in import-dependent countries to ensure supplies of affordable food for consumers. Although the El Niño/Southern Oscillation (ENSO) often affects seasonal temperature and precipitation, and thus crop yields in many regions, the overall impacts of ENSO on global yields are uncertain. Here we present a global map of the impacts of ENSO on the yields of major crops and quantify its impacts on their global-mean yield anomalies. Results show that El Niño likely improves the global-mean soybean yield by 2.1-5.4% but appears to change the yields of maize, rice and wheat by -4.3 to +0.8%. The global-mean yields of all four crops during La Niña years tend to be below normal (-4.5 to 0.0%). Our findings highlight the importance of ENSO to global crop production.


Assuntos
Produtos Agrícolas , El Niño Oscilação Sul , Abastecimento de Alimentos , Humanos , Oryza , Chuva , Neve , Temperatura , Triticum , Zea mays
8.
Carbon Balance Manag ; 2: 6, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17535447

RESUMO

BACKGROUND: Changes in the timing of phenological events may cause the annual carbon budget of deciduous forests to change. Therefore, one should take such events into account when evaluating the effects of global warming on deciduous forests. In this article, we report on the results of numerical experiments done with a model that includes a phenological module simulating the timing of bud burst and other phenological events and estimating maximum leaf area index. RESULTS: This study suggests that the negative effects of warming on tree productivity (net primary production) outweigh the positive effects of a prolonged growing season. An increase in air temperature by 3 degrees C (5 degrees C) reduces cumulative net primary production by 21.3% (34.2%). Similarly, cumulative net ecosystem production (the difference between cumulative net primary production and heterotrophic respiration) decreases by 43.5% (64.5%) when temperatures are increased by 3 degrees C (5 degrees C). However, the positive effects of CO2 enrichment (2 x CO2) outweigh the negative effects of warming (<5 degrees C). CONCLUSION: Although the model was calibrated and validated for a specific forest ecosystem, the implications of the study may be extrapolated to deciduous forests in cool-temperate zones. These forests share common features, and it can be conjectured that carbon stocks would increase in such forests in the face of doubled CO2 and increased temperatures as long as the increase in temperature does not exceed 5 degrees C.

9.
Ambio ; 32(4): 295-301, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12956596

RESUMO

The terrestrial water cycle and the impact of climate change are critical for agricultural and natural ecosystems. In this paper, we assess both by running a macro-scale water balance model under a baseline condition and 2 General Circulation Model (GCM)-based climate change scenarios. The results show that in 2021-2030, water demand will increase worldwide due to climate change. Water shortage is expected to worsen in western Asia, the Arabian Peninsula, northern and southern Africa, northeastern Australia, southwestern North America, and central South America. A significant increase in surface runoff is expected in southern Asia and a significant decrease is expected in northern South America. These changes will have implications for regional environment and socioeconomics.


Assuntos
Clima , Abastecimento de Água/normas , Agricultura , Conservação dos Recursos Naturais , Ecossistema , Previsões , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...